首页   冶金自动化杂志   新闻中心   自动化信息网   冶金计量协会   杂志广告   厂商信息   自动化论坛   计控自动化对标
期刊介绍
期刊荣誉
编委会
征稿启事
作者须知
文章模板
在线杂志
当前位置:冶金自动化杂志 ->  在线杂志
期刊年份   期号   关键字   
基于深度学习的目标检测算法在冷轧表面缺陷检测中的应用
文章作者:顾佳晨等
出处: 冶金自动化2019年第6期
作者单位: 北京首钢自动化信息技术有限公司信息事业部
参考文献:
关键词:卷积神经网络;深度学习;冷轧带钢;表面缺陷;机器视觉;目标检测
摘要:机器视觉技术在工业产品表面缺陷检测领域的应用越来越广泛,但也面临诸多挑战。冷轧带钢表面缺陷具有种类多、形态复杂多变、特征差别大等特点,传统的基于图像处理和机器学习技术的检测方法对于不同缺陷需要分别提取特征并建立模型,影响了模型的使用效果和准确率的提升。本文利用基于深度学习的目标检测算法Faster RCNN建立冷轧钢板表面缺陷的检测和识别模型,针对10大类冷轧镀锌主要缺陷,模型在验证集上准确率平均达到了93%。
正文:正文下载
版权所有 © 2006 《冶金自动化》编辑部 新鸿儒承制
地址:北京海淀区学院南路76号南院 电话:010-62181013 传真:010-62181013 E-mail:mia@yjzdh.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:010-62662699,E-mail:support@magtech.com.cn
冶金自动化研究设计院《冶金自动化》杂志社 京ICP备09114784号