首页   冶金自动化杂志   新闻中心   自动化信息网   冶金计量协会   杂志广告   厂商信息   自动化论坛   计控自动化对标
期刊介绍
期刊荣誉
编委会
征稿启事
作者须知
文章模板
在线杂志
当前位置:冶金自动化杂志 ->  在线杂志
期刊年份   期号   关键字   
基于BPNN和RNN模型的烧结矿质量预测方法对比及分析
文章作者:刘加达等
出处: 冶金自动化2020年第5期
作者单位: 北京科技大学能源与环境工程学院
参考文献:
关键词:烧结;BPNN模型;RNN模型;质量预测;对比分析
摘要:针对钢铁烧结配料工序完成后烧结矿质量难以及时准确判断的问题,提出通过稳定焦炭配比,进而对全铁品位和碱度指标预测实现烧结矿质量控制。依据烧结生产特性,分别建立静态的BP神经网络(BP neural network,简称BPNN)和动态的Elman递归神经网络(recurrent neural network,简称RNN)模型应用于烧结矿质量预测。仿真试验表明,应用工业数据训练建立的静态BPNN预测模型预测精度高于Elman RNN模型。最终,采用BPNN建立的烧结焦炭配比、全铁品位、烧结矿碱度的预测模型预测精度分别达到77.5%、90.0%和825%。计算结果对烧结生产具有重要的指导意义。
正文:正文下载
版权所有 © 2006 《冶金自动化》编辑部 新鸿儒承制
地址:北京海淀区学院南路76号南院 电话:010-62181013 传真:010-62181013 E-mail:mia@yjzdh.com
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:010-62662699,E-mail:support@magtech.com.cn
冶金自动化研究设计院《冶金自动化》杂志社 京ICP备09114784号